Processing math: 100%

本記事ではPythonのWebアプリケーションフレームワークの一つであるFlaskのblueprintの使い方について紹介します。 blueprintを使うことによって、アプリケーションをblueprint単位で分割できます。 特に規模が大きなアプリケーションほど、blueprintの利用によってアプリケーションを分割することでプログラムを管理しやすくなり、得られるメリットが大きいです。 本記事はFlask-Large-Aplication-Exampleを参考にして、特にblueprintに関する箇所を抽出し、簡素化して自分の理解をまとめたものです。 Flaskのblueprintを使って初めてアプリケーションを実装する人の参考になるような入門記事です。

続きを読む

単語の系列 (たとえば文や文書) に対して確率を割り当てるようなモデルは言語モデルと呼ばれています。 古くはN-gram言語モデルが用いられました。 最近ではより広い文脈を考慮したり、単語スパースネスの問題に対処できるニューラルネットワークに基づく言語モデル (ニューラル言語モデル) が良く用いられます。 ニューラル言語モデルは文書分類、情報抽出、機械翻訳などの自然言語処理の様々なタスクで用いられます。 本記事ではコード付きでLSTMに基づく言語モデルおよびその学習方法を説明します。 本記事を読むことで、LSTMに基づく言語モデルの概要、学習の流れを理解できます。

続きを読む

この記事ではパーセプトロンを使って文書分類器を学習し、学習済みの分類器を使って文書を分類する流れをご紹介します。パーセプトロンはシンプルな分類アルゴリズムの一つである一方で、これを理解していると他の分類アルゴリズムを理解する助けになるため、初めて機械学習を学ぶ初学者の方にとってよい題材といえます。 この記事に載せているプログラムはここにまとまっています。

続きを読む

本エントリではPythonのJoblibがもつキャッシュ機能によって同じ計算を省略し、処理を高速化するための方法を説明する。このエントリを読むことで、関数をキャッシュ可能にする方法、numpyのarrayをメモリーマップを使って読み込む方法、参照を使ってデータにアクセスする方法がわかる。

続きを読む

個人的にはプログラミングの勉強は写経が一番頭に入る気がする、ということで読んでいた。 気になったところ データに正規分布を仮定したときのナイーブベイズ分類器について。 平均をμ、分散をσ2としたときの正規分布は p(x;μ,σ2)=12πσ2{exp(xμ)22σ2} これのlogをとると、 logp(x;μ,σ2)=log{12πσ2{exp(xμ)22σ2}} =12log(2πσ2)(xμ)22σ2 ナイーブベイズ分類器の対数尤度関数は、データがK次元ベクトルで表現されていて、それがN個あるとすると、 logL(X,Y;μ,σ)=log(Nn=1p(xn,yn)) =log(Nn=1p(yn)p(xn|yn)) =Nn=1logp(yn)+Nn=1logp(xn|yn) =Nn=1logp(yn)+Nn=1Kk=1logp(xnk|yn) =Nn=1logp(yn)+Nn=1Kk=1{12log(2πσ2ynk)(xnkμynk)22σ2ynk}

続きを読む

プロフィール画像

Takuya Makino

自然言語処理の研究開発に従事しています。自然言語処理に関する研究から製品化に向けた開発に興味を持っています。本ブログでは自然言語処理、機械学習、プログラミング、日々の生活について扱います。詳細はプロフィールを御覧ください。

自然言語処理の研究開発に従事

Kanagawa, Japan